These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cellular and molecular aspects of adipose tissue development. Author: Ailhaud G, Grimaldi P, Négrel R. Journal: Annu Rev Nutr; 1992; 12():207-33. PubMed ID: 1503804. Abstract: Both in animals and humans, before or after birth, angiogenesis appears to be closely coordinated in time and space with the formation of fat cell clusters. Monobutyrin, a novel fat-specific angiogenesis factor, may play a role in this process. The potential to acquire new fat cells appears to be permanent throughout life in both animals and humans, as revealed by in vitro experiments. Considerable evidence now supports the view that BAT and WAT are distinct organs; in addition, the existence of distinct BAT precursor cells is demonstrated by their unique ability to express the UCP gene. In bovine and ovine, the transformation of BAT into WAT is strongly suggested by the rapid disappearance after birth of UCP from the various BAT depots. Despite the initial cell heterogeneity of the stromal-vascular fraction, cultured stromal-vascular cells of adipose tissue are adipose precursor cells that show varying capacities for replication and differentiation, according to age and fat depot. Studies of adipose cell differentiation in vitro correspond to the sequence: adipoblast (unipotential cells)----commitment preadipose cell (preadipocyte)----terminal differentiation immature adipose cell----terminal differentiation mature adipose cell (adipocyte). Cell commitment is triggered by growth arrest and characterized by the expression of early markers (A2COL6/pOb24; clone 5; LPL), whereas only terminal differentiation of preadipocytes requires the presence of various hormones. Multiple signaling pathways have been characterized and shown to cooperate in the process of terminal differentiation. The concept that adipose cells behave as secretory cells is now emerging from in vitro data, since secretion of various proteins (LPL, adipsin, CETP) and important metabolites (fatty acids, monobutyrin, androgens, estrogens, prostaglandins) takes place both constitutively and upon hormonal stimulation. This suggests that adipose tissue participates more directly than previously thought in metabolic activities and energy balance.[Abstract] [Full Text] [Related] [New Search]