These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CysLT1 signal transduction in differentiated U937 cells involves the activation of the small GTP-binding protein Ras.
    Author: Capra V, Ravasi S, Accomazzo MR, Parenti M, Rovati GE.
    Journal: Biochem Pharmacol; 2004 Apr 15; 67(8):1569-77. PubMed ID: 15041474.
    Abstract:
    We investigated the signal transduction pathway(s) of leukotriene D(4) (LTD(4)) in the human promonocytic U937 cells, a cell line known to constitutively express CysLT(1) receptors. Herein, we demonstrate that LTD(4) specifically acts on a CysLT(1) receptor to dose-dependently increase (three to five-fold over basal) RasGTP through a G(i/o) protein. In fact, while cytosolic Ca(2+) ([Ca(2+)](i)) increase was only partially sensitive to pertussis toxin (PTx), Ras activation was almost completely inhibited by the same toxin. Furthermore, the phospholipase C (PLC) inhibitor U73122 completely inhibited both [Ca(2+)](i) and RasGTP increase, suggesting that in these cells PLC is the point of convergence for both PTx insensitive and sensitive pathways leading to [Ca(2+)](i) release and Ras activation. Indeed, chelating intracellular Ca(2+) strongly (>70%) prevented LTD(4)-induced Ras activation, indicating that this ion plays an essential role for CysLT(1)-induced downstream signaling in differentiated U937 (dU937) cells. In addition, while Src did not appear to be substantially involved in CysLT(1)-induced signaling, genistein was able to partially inhibit LTD(4)-induced [Ca(2+)](i) transient ( approximately 34%) and almost completely prevented Ras activation (>90%), suggesting a potential role for other Ca(2+)-dependent tyrosine kinases in LTD(4)-induced signaling. Finally, agonist-induced CysLT(1) stimulation was followed by a specific extracellular regulated kinase (ERK) 1/2 phosphorylation, an event with a pharmacological profile similar to that of Ras activation, partially ( approximately 40%) sensitive to Clostridium sordellii lethal toxin and totally blocked by PTx. In conclusion, LTD(4)-induced CysLT(1) receptor activation in dU937 cells leads to Ras activation and ERK phosphorylation mostly through a PTx-sensitive G(i/o) protein, PLC, and Ca(2+)-dependent tyrosine kinase(s).
    [Abstract] [Full Text] [Related] [New Search]