These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel role of water-soluble chlorophyll proteins in the transitory storage of chorophyllide. Author: Reinbothe C, Satoh H, Alcaraz JP, Reinbothe S. Journal: Plant Physiol; 2004 Apr; 134(4):1355-65. PubMed ID: 15047899. Abstract: All chlorophyll (Chl)-binding proteins involved in photosynthesis of higher plants are hydrophobic membrane proteins integrated into the thylakoids. However, a different category of Chl-binding proteins, the so-called water-soluble Chl proteins (WSCPs), was found in members of the Brassicaceae, Polygonaceae, Chenopodiaceae, and Amaranthaceae families. WSCPs from different plant species bind Chl a and Chl b in different ratios. Some members of the WSCP family are induced after drought and heat stress as well as leaf detachment. It has been proposed that this group of proteins might have a physiological function in the Chl degradation pathway. We demonstrate here that a protein that shared sequence homology to WSCPs accumulated in etiolated barley (Hordeum vulgare) seedlings exposed to light for 2 h. The novel 22-kD protein was attached to the outer envelope of barley etiochloroplasts, and import of the 27-kD precursor was light dependent and induced after feeding the isolated plastids the tetrapyrrole precursor 5-aminolevulinic acid. HPLC analyses and spectroscopic pigment measurements of acetone-extracted pigments showed that the 22-kD protein is complexed with chlorophyllide. We propose a novel role of WSCPs as pigment carriers operating during light-induced chloroplast development.[Abstract] [Full Text] [Related] [New Search]