These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development.
    Author: Wilson RA, Chang PK, Dobrzyn A, Ntambi JM, Zarnowski R, Keller NP.
    Journal: Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539.
    Abstract:
    Unsaturated fatty acids are important constituents of all cell membranes and are required for normal growth. In the filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives also influence asexual (conidial) and sexual (ascospore) sporulation processes. To investigate the relationship between fatty acid metabolism and fungal development, we disrupted the A. nidulans sdeA and sdeB genes, both encoding Delta9-stearic acid desaturases responsible for the conversion of palmitic acid (16:0) and stearic acid (18:0) to palmitoleic acid (16:1) and oleic acid (18:1). The effects of sdeA deletion on development were profound, such that growth, conidial and ascospore production were all reduced at 22 and 37 degrees C. Total fatty acid content was increased over 3-fold in the DeltasdeA strain, reflected in up-regulation of the expression of the fasA gene encoding the alpha chain of the fatty acid synthase, compared to wild type. Stearic acid accumulated approximately 3-fold compared to wild type in the DeltasdeA strain, while unsaturated fatty acid production was decreased. In contrast, disruption of sdeB reduced fungal growth and conidiation at 22 degrees C, but did not affect these processes at 37 degrees C compared to wild type. Interestingly, ascospore production was increased at 37 degrees C for DeltasdeB compared to wild type. Total fatty acid content was not increased in this strain, although stearic acid accumulated 2-fold compared to wild type, and unsaturated fatty acid production was decreased. Combining the DeltasdeA and DeltasdeB alleles created a synthetic lethal strain requiring the addition of oleic acid to the medium for a modicum of growth. Taken together, our results suggest a role for sdeA in growth and development at all temperatures, while sdeB is involved in growth and development at lower temperatures.
    [Abstract] [Full Text] [Related] [New Search]