These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry. Author: Fawcett IP, Barnes GR, Hillebrand A, Singh KD. Journal: Neuroimage; 2004 Apr; 21(4):1542-53. PubMed ID: 15050578. Abstract: Using synthetic aperture magnetometry (SAM) analyses of magnetoencephalographic (MEG) data, we investigated the variation in cortical response magnitude and frequency as a function of stimulus temporal frequency. In two separate experiments, a reversing checkerboard stimulus was used in the right or left lower visual field at frequencies from 0 to 21 Hz. Average temporal frequency tuning curves were constructed for regions-of-interest located within medial visual cortex and V5/MT. In medial visual cortex, it was found that both the frequency and magnitude of the steady-state response varied as a function of the stimulus frequency, with multiple harmonics of the stimulus frequency being found in the response. The maximum fundamental response was found at a stimulus frequency of 8 Hz, whilst the maximum broadband response occurred at 4 Hz. In contrast, the magnitude and frequency content of the evoked onset response showed no dependency on stimulus frequency. Whilst medial visual cortex showed a power increase during stimulation, extra-striate areas such as V5/MT exhibited a bilateral event-related desynchronisation (ERD). The frequency content of this ERD did not depend on the stimulus frequency but was a broadband power reduction across the 5-20 Hz frequency range. The magnitude of this ERD within V5/MT was strongly low-pass tuned for stimulus frequency, and showed only a moderate preference for stimuli in the contralateral visual field.[Abstract] [Full Text] [Related] [New Search]