These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: delta-Opioid receptor antagonists inhibit GIRK channel currents in acutely dissociated brainstem neurons of rat. Author: Shirasaki T, Abe K, Soeda F, Takahama K. Journal: Brain Res; 2004 May 01; 1006(2):190-7. PubMed ID: 15051522. Abstract: In this study, we investigated the effects of delta-opioid receptor antagonists on the G protein-coupled inwardly rectifying potassium (GIRK) channel currents induced by serotonin (5-HT) and noradrenaline (NAd) in the dorsal raphe and the locus coeruleus neurons, respectively. Perforated patch and conventional whole-cell patch clamp recording techniques were used for the study. Neurons were acutely dissociated from neonatal rats. Both naltrindole (NTI) and naltriben (NTB), which are selective delta-antagonists possessing antitussive activity in in vivo animal studies, reversibly inhibited the 5-HT-induced GIRK channel currents (I(5-HT)) in dorsal raphe neurons. This inhibition was concentration-dependent and voltage-independent. The half-maximum inhibitory concentration (IC(50)) on I(5-HT) was 9.84x10(-5) M for NTI and 1.28x10(-5) M for NTB. The inhibition was not reversed by 10(-5) M DPDPE, a selective delta-opioid receptor agonist. NTI did not affect 50% effective concentration (EC(50)) on the concentration-response relationship for 5-HT but inhibited the maximum response. In neurons internally perfused with GTPgammaS, both NTI and NTB also inhibited the GIRK channel currents irreversibly activated by 5-HT. Furthermore, these antagonists concentration dependently inhibited 10(-6) M NAd-induced currents (I(NAd)) in locus coeruleus neurons. The IC(50) of NTI on I(NAd) was 8.44x10(-5) M, which was close to that on I(5-HT). The results suggest that NTI and NTB, which are delta-opioid receptor antagonists possessing antitussive activity, may inhibit GIRK channel currents through a non-opioid action, and give further support to our idea previously proposed that centrally acting non-narcotic antitussives have a common characteristic of the inhibitory action on GIRK channels.[Abstract] [Full Text] [Related] [New Search]