These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The evolution of a neo-XY1Y2 sex chromosome system by autosome-sex chromosome fusion in Dundocoris nodulicarinus Jacobs (Heteroptera: Aradidae: Carventinae). Author: Jacobs DH. Journal: Chromosome Res; 2004; 12(2):175-91. PubMed ID: 15053487. Abstract: Sibling subspecies of Dundocoris nodulicarinus, inhabiting different isolated indigenous evergreen forests in South Africa, have chromosome numbers of 2n(male) = 14XY, 9XY1Y2 and 7XY1Y2. The ancestral chromosome number of Dundocoris is probably 2n(male) = 28XY and several chromosome fusions were involved in the karyotype evolution of these taxa. The XY1Y2 sex chromosome system of the 9XY1Y2 D. nodulicarinus novenus originated by the fusion of a large autosome with the X-chromosome, forming a neo-X with the homologue of the fused autosome forming the neo-Y (=Y1) and the original Y-chromosome, the Y2. While the original X- and Y-chromosomes are heterochromatic and heteropycnotic during prophase I, the autosomal part of the neo-X and the neo-Y stay euchromatic and behave like a normal autosomal pair, forming synapsis and chiasmata. The XY1Y2 sex chromosome system of the 7XY1Y2 D. nodulicarinus septeni probably originated from the 9XY1Y2 karyotype when the homologous chromosomes of a small autosomal pair fused with the original X- and Y-chromosomes, respectively. In both the subspecies with the neo-XY1Y2 systems, the original sex chromosomes still undergo chromatid segregation at anaphase I (= post-reductional). The evolution and behaviour of the karyotypes and sex chromosome systems during the course of meiosis in the subspecies of D. nodulicarinus are described, discussed and illustrated.[Abstract] [Full Text] [Related] [New Search]