These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Author: Anderson CR, Cook GM. Journal: Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729. Abstract: Two environmental sites in New Zealand were sampled (e.g., water and sediment) for bacterial isolates that could use either arsenite as an electron donor or arsenate as an electron acceptor under aerobic and anaerobic growth conditions, respectively. These two sites were subjected to widespread arsenic contamination from mine tailings generated from historic gold mining activities or from geothermal effluent. No bacteria were isolated from these sites that could utilize arsenite or arsenate under the respective growth conditions tested, but a number of chemoheterotrophic bacteria were isolated that could grow in the presence of high concentrations of arsenic species. In total, 17 morphologically distinct arsenic-resistant heterotrophic bacteria isolates were enriched from the sediment samples, and analysis of the 16S rRNA gene sequence of these bacteria revealed them to be members of the genera Exiguobacterium, Aeromonas, Bacillus, Pseudomonas, Escherichia, and Acinetobacter. Two isolates, Exiguobacterium sp. WK6 and Aeromonas sp. CA1, were of particular interest because they appeared to gain metabolic energy from arsenate under aerobic growth conditions, as demonstrated by an increase in cellular growth yield and growth rate in the presence of arsenate. Both bacteria were capable of reducing arsenate to arsenite via a non-respiratory mechanism. Strain WK6 was positive for arsB, but the pathway of arsenate reduction for isolate CA1 was via a hitherto unknown mechanism. These isolates were not gaining an energetic advantage from arsenate or arsenite utilization, but were instead detoxifying arsenate to arsenite. As a subsidiary process to arsenate reduction, the external pH of the growth medium increased (i.e., became more alkaline), allowing these bacteria to grow for extended periods of time.[Abstract] [Full Text] [Related] [New Search]