These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nucleotide-binding kinetics of Na,K-ATPase: cation dependence. Author: Fedosova NU, Esmann M. Journal: Biochemistry; 2004 Apr 13; 43(14):4212-8. PubMed ID: 15065865. Abstract: Correlation between the Na,K-ATPase affinity to ADP and the cation (its nature and concentration) present in the medium was investigated. In buffer with low ionic strength (I approximately 1 mM) high-affinity ADP binding was not observed, while a stepwise increase in the concentrations of added cation (Na(+), Tris(+), imidazole(+), N-methylglucamine(+), choline(+)) induced an increase in the ADP affinity. The effect was fully saturated at 30-50 mM for all of the cations tested. The maximal affinity for ADP was slightly higher in the presence of Na(+), Tris(+), or imidazole(+) than in the presence of N-methylglucamine(+) or choline(+) (equilibrium dissociation constant K(d) 0.2-0.3 vs 0.7 microM). The ADP dissociation rates from its complex with enzyme in the presence of Na(+) or Tris(+) were similar, implying identity of the nucleotide-binding enzyme conformations, which therefore are assigned to E(1). The ability to compete with K(+) clearly distinguished Na(+) from other cations, which speaks against the sole involvement of the transport sites in the induction of the ADP-binding E(1) conformation. Since the cations are similar in their mode of induction of the high ADP affinity but they demonstrate a pronounced difference in ability to compete with K(+), their effects cannot be combined within any scheme with only one type of cation-binding sites. We suggest that the high affinity toward nucleotide is induced by cation interactions within the protein or lipid and that these nucleotide-domain-related sites coexist with the transport sites, which bind only Na(+) or K(+).[Abstract] [Full Text] [Related] [New Search]