These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cognitive tasks for driving a brain-computer interfacing system: a pilot study. Author: Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, Owen AM. Journal: IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):48-54. PubMed ID: 15068187. Abstract: Different cognitive tasks were investigated for use with a brain-computer interface (BCI). The main aim was to evaluate which two of several candidate tasks lead to patterns of electroencephalographic (EEG) activity that could be differentiated most reliably and, therefore, produce the highest communication rate. An optimal signal processing method was also sought to enhance differentiation of EEG profiles across tasks. In ten normal subjects (five male), aged 29-54 years, EEG activity was recorded from four channels during cognitive tasks grouped in pairs, and performed alternately. Four imagery tasks were: spatial navigation around a familiar environment; auditory imagery of a familiar tune; and right and left motor imagery of opening and closing the hand. Signal processing methodology included autoregressive (AR) modeling and classification based on logistic regression and a nonlinear generative classifier. The highest communication rate was found using the navigation and auditory imagery tasks. In terms of classification performance and, hence, possible communication rate, these results were significantly better (p < 0.05) than those obtained with the classical pairing of motor tasks involving imaginary movements of the left and right hands. In terms of EEG data analysis, a nonlinear classification model provided more robust results than a linear model (p << 0.01), and a lower AR model order than those used in previous work was found to be effective. These findings have implications for establishing appropriate methods to operate BCI systems, particularly for disabled people who may experience difficulty with motor tasks, even motor imagery.[Abstract] [Full Text] [Related] [New Search]