These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Brain network interactions in auditory, visual and linguistic processing. Author: Horwitz B, Braun AR. Journal: Brain Lang; 2004 May; 89(2):377-84. PubMed ID: 15068921. Abstract: In the paper, we discuss the importance of network interactions between brain regions in mediating performance of sensorimotor and cognitive tasks, including those associated with language processing. Functional neuroimaging, especially PET and fMRI, provide data that are obtained essentially simultaneously from much of the brain, and thus are ideal for enabling one to assess interregional functional interactions. Two ways to use these types of data to assess network interactions are presented. First, using PET, we demonstrate that anterior and posterior perisylvian language areas have stronger functional connectivity during spontaneous narrative production than during other less linguistically demanding production tasks. Second, we show how one can use large-scale neural network modeling to relate neural activity to the hemodynamically-based data generated by fMRI and PET. We review two versions of a model of object processing - one for visual and one for auditory objects. The regions comprising the models include primary and secondary sensory cortex, association cortex in the temporal lobe, and prefrontal cortex. Each model incorporates specific assumptions about how neurons in each of these areas function, and how neurons in the different areas are interconnected with each other. Each model is able to perform a delayed match-to-sample task for simple objects (simple shapes for the visual model; tonal contours for the auditory model). We find that the simulated electrical activities in each region are similar to those observed in nonhuman primates performing analogous tasks, and the absolute values of the simulated integrated synaptic activity in each brain region match human fMRI/PET data. Thus, this type of modeling provides a way to understand the neural bases for the sensorimotor and cognitive tasks of interest.[Abstract] [Full Text] [Related] [New Search]