These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extracellular ATP-induced calcium signaling in mIMCD-3 cells requires both P2X and P2Y purinoceptors.
    Author: Xia SL, Wang L, Cash MN, Teng X, Schwalbe RA, Wingo CS.
    Journal: Am J Physiol Renal Physiol; 2004 Aug; 287(2):F204-14. PubMed ID: 15068972.
    Abstract:
    Kidney tubules are targets for the activation of locally released nucleotides through multiple P2 receptor types. Activation of these P2 receptors modulates cellular Ca(2+) signaling and downstream cellular function. The purpose of this study was to determine whether P2 receptors were present in mIMCD-3 cells, a mouse inner medullary collecting duct cell line, and if so, to examine their link with intracellular Ca(2+) homeostasis. To monitor intracellular Ca(2+) concentration ([Ca(2+)](i)), experiments were conducted using the fluorescent dye fura 2. ATP (0.1-100 microM) produced a dose-dependent increase in [Ca(2+)](i) in a physiological Ca(2+)-containing solution, with an EC(50) of 2.5 microM. The P2-receptor antagonist PPADS reduced the effect of ATP on [Ca(2+)](i), and the P1-receptor agonist adenosine caused only a small increase in [Ca(2+)](i). Preincubation of cells with the phospholipase C antagonist U-73122 blocked the ATP-induced increase in [Ca(2+)](i), indicating P2Y receptors were involved in this process. In a Ca(2+)-free bath solution, thapsigargin and ATP induced intracellular Ca(2+) release from an identical pool. Nucleotides caused an increase in [Ca(2+)](i) in the potency order of UTP = ATP > ATP gamma S > ADP > UDP that is best fitted with the P2Y(2) subtype profile. Although the P2Y agonist UTP induced a similar large transient increase in [Ca(2+)](i) as did ATP, a small but sustained increase in [Ca(2+)](i) occurred only in ATP-stimulated cells, suggesting the role of P2X receptors in Ca(2+) influx. The sustained increase in [Ca(2+)](i) could be blocked by either nonselective cation channel blockers Gd(3+) or P2X antagonists PPADS and PPNDS. Furthermore, when either Gd(3+) or PPNDS was applied to the bath solution before ATP application, the ATP-induced increase in [Ca(2+)](i) was significantly reduced. Both RT-PCR and Western blotting corroborated the presence of P2X(1) and P2Y(2) receptors. These studies demonstrate that mIMCD-3 cells have both P2X and P2Y subtype receptors and that the activation of both P2X and P2Y receptors by extracellular ATP appears to be required to regulate intracellular Ca(2+) signaling.
    [Abstract] [Full Text] [Related] [New Search]