These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Donor-derived TNF-alpha regulates pulmonary chemokine expression and the development of idiopathic pneumonia syndrome after allogeneic bone marrow transplantation. Author: Hildebrandt GC, Olkiewicz KM, Corrion LA, Chang Y, Clouthier SG, Liu C, Cooke KR. Journal: Blood; 2004 Jul 15; 104(2):586-93. PubMed ID: 15069018. Abstract: Idiopathic pneumonia syndrome (IPS) is a significant cause of mortality after allogeneic bone marrow transplantation (allo-BMT), and tumor necrosis factor-alpha (TNF-alpha) is a significant effector molecule in this process. However, the relative contribution of donor-versus host-derived TNF-alpha to the development of IPS has not been elucidated. Using a lethally irradiated parent --> F1 mouse IPS model, we showed that 5 weeks after transplantation allo-BMT recipients developed significant lung injury compared with syngeneic controls, which was associated with increased bronchoalveolar lavage (BAL) fluid levels of TNF-alpha, elevated numbers of donor-derived TNF-alpha-secreting T cells, and increased pulmonary macrophage production of TNF-alpha to lipopolysaccharide (LPS) stimulation. Allo-BMT with TNF-alpha(-/-) donor cells resulted in significantly reduced IPS severity, whereas utilization of TNF-alpha-deficient mice as BMT recipients had no effect on IPS. We next determined that TNF-alpha secretion from both donor accessory cells (monocytes/macrophages) and T cells significantly contributed to the development of IPS. Importantly, the absence of donor T-cell-derived TNF-alpha resulted in a significant decrease in inflammatory chemokine production in the lung and near complete abrogation of IPS. Collectively, these data demonstrate that donor TNF-alpha is critical to the development of IPS and reveal a heretofore unknown mechanism for T-cell-derived TNF-alpha in the evolution of this process.[Abstract] [Full Text] [Related] [New Search]