These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex.
    Author: Pelletier JG, Apergis J, Paré D.
    Journal: J Neurophysiol; 2004 May; 91(5):2079-89. PubMed ID: 15069098.
    Abstract:
    One model of episodic memory posits that during slow-wave sleep (SWS), the synchronized discharges of hippocampal neurons in relation to sharp waves "replay" activity patterns that occurred during the waking state, facilitating synaptic plasticity in the neocortex. Although evidence of replay was found in the hippocampus in relation to sharp waves, it was never shown that this activity reached the neocortex. Instead, it was assumed that the rhinal cortices faithfully transmit information from the hippocampus to the neocortex and reciprocally. Here, we tested this idea using 3 different approaches. 1) Stimulating electrodes were inserted in the entorhinal cortex and temporal neocortex and evoked unit responses were recorded in between them, in the intervening rhinal cortices. In these conditions, impulse transfer occurred with an extremely low probability, in both directions. 2) To rule out the possibility that this unreliable transmission resulted from the artificial nature of electrical stimuli, crosscorrelation analyses of spontaneous neocortical, perirhinal, and entorhinal firing were performed in unanesthetized animals during the states of waking and SWS. Again, little evidence of propagation could be obtained in either state. 3) To test the idea that propagation occurs only when large groups of neurons are activated within a narrow time window, we computed perievent histograms of neocortical, perirhinal, and entorhinal neuronal discharges around large-amplitude sharp waves. However, these synchronized entorhinal discharges also failed to propagate across the perirhinal cortex. These findings suggest that the rhinal cortices are more than a relay between the neocortex and hippocampus, but rather a gate whose properties remain to be identified.
    [Abstract] [Full Text] [Related] [New Search]