These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogen-mediated C-C bond formation: catalytic regio- and stereoselective reductive condensation of alpha-keto aldehydes and 1,3-enynes. Author: Jang HY, Huddleston RR, Krische MJ. Journal: J Am Chem Soc; 2004 Apr 14; 126(14):4664-8. PubMed ID: 15070383. Abstract: Hydrogenation of 1,3-enynes in the presence of alpha-keto aldehydes using cationic Rh(I) catalysts enables regio- and stereoselective reductive coupling to the acetylenic terminus of the enyne to afford (E)-2-hydroxy-3,5-dien-1-one products. Reductive condensation of 1-phenyl but-3-en-1-yne 1a with phenyl glyoxal 2a performed under an atmosphere of D(2) provides the product of mono-deuteration, (E)-2-hydroxy-3-deuterio-3,5-dien-1-one deuterio-3a, in 85% yield. Competition experiments involving catalytic hydrogenation of phenyl glyoxal in the presence of equimolar quantities of 1,4-diphenylbutadiene and 1,4-diphenylbut-3-en-1-yne 10a, as well as 1,4-diphenylbut-3-en-1-yne 10a and 1,4-diphenylbutadiyne, are chemoselective for coupling to the more highly unsaturated partner, suggesting a preequilibrium involving precoordination and exchange of the pi-unsaturated pronucleophiles with the catalyst prior to C-C bond formation, as well as a preference for coordination of the most pi-acidic reacting partner, as explained by the Dewar-Chatt-Duncanson model for alkyne coordination.[Abstract] [Full Text] [Related] [New Search]