These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus.
    Author: Janz JM, Farrens DL.
    Journal: J Biol Chem; 2004 Jul 09; 279(28):29767-73. PubMed ID: 15070895.
    Abstract:
    Conformational changes enable the photoreceptor rhodopsin to couple with and activate the G-protein transducin. Here we demonstrate a key interaction between these proteins occurs between the C terminus of the transducin alpha-subunit (G(Talpha)) and a hydrophobic cleft in the rhodopsin cytoplasmic face exposed during receptor activation. We mapped this interaction by labeling rhodopsin mutants with the fluorescent probe bimane and then assessed how binding of a peptide analogue of the G(Talpha) C terminus (containing a tryptophan quenching group) affected their fluorescence. From these and other assays, we conclude that the G(Talpha) C-terminal tail binds to the inner face of helix 6 in a retinal-linked manner. Further, we find that a "hydrophobic patch" comprising key residues in the exposed cleft is required for transducin binding/activation because it enhances the binding affinity for the G(Talpha) C-terminal tail, contributing up to 3 kcal/mol for this interaction. We speculate the hydrophobic interactions identified here may be important in other GPCR signaling systems, and our Trp/bimane fluorescence methodology may be generally useful for mapping sites of protein-protein interaction.
    [Abstract] [Full Text] [Related] [New Search]