These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Decolorization of alkaline TNT hydrolysis effluents using UV/H(2)O(2). Author: Hwang S, Bouwer EJ, Larson SL, Davis JL. Journal: J Hazard Mater; 2004 Apr 30; 108(1-2):61-7. PubMed ID: 15081163. Abstract: Effects of H(2)O(2) dosage (0, 10, 50, 100 and 300 mg/l), reaction pH (11.9, 6.5 and 2.5) and initial color intensity (85, 80 and 60 color unit) on decolorization of alkaline 2,4,6-trinitrotoluene (TNT) hydrolysis effluents were investigated at a fixed UV strength (40 W/m(2)). Results indicated that UV/H(2)O(2) oxidation could efficiently achieve decolorization and further mineralization. Pseudo first-order decolorization rate constants, k, ranged between 2.9 and 5.4 h(-1) with higher values for lower H(2)O(2) dosage (i.e., 10 mg/l H(2)O(2)) when the decolorization occurred at the reaction pH of 11.9, whereas a faster decolorization was achieved with increase in H(2)O(2) dosage at both pH 6.5 and 2.5, resulting in the values of k as fast as 15.4 and 26.6 h(-1) with 300 mg/l H(2)O(2) at pH 6.5 and 2.5, respectively. Difference in decolorization rates was attributed to the reaction pH rather than to the initial color intensity, resulting from the scavenging of hydroxyl radical by carbonate ion. About 40% of spontaneous mineralization was achieved with addition of 10 mg/l H(2)O(2) at pH 6.5. Efficient decolorization and extension of H(2)O(2) longevity were observed at pH 6.5 conditions. It is recommended that the colored effluents from alkaline TNT hydrolysis be neutralized prior to a decolorization step.[Abstract] [Full Text] [Related] [New Search]