These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 2D TRIPLE in orientationally disordered samples--a means to resolve and determine relative orientation of hyperfine tensors.
    Author: Goldfarb D, Epel B, Zimmermann H, Jeschke G.
    Journal: J Magn Reson; 2004 May; 168(1):75-87. PubMed ID: 15082251.
    Abstract:
    The two-dimensional (2D) TRIPLE experiment provides correlations between electron-nuclear double resonance (ENDOR) frequencies that belong to the same electron-spin manifold, M(S), and therefore allows to assign ENDOR lines to their specific paramagnetic centers and M(S) manifolds. This, in turn, also provides the relative signs of the hyperfine couplings. So far this experiment has been applied only to single crystals, where the cross-peaks in the 2D spectrum are well resolved with regular shapes. Here we introduce the application of the 2D TRIPLE experiment to orientationally disordered systems, where it can resolve overlapping powder patterns. Moreover, analysis of the shape of the cross-peaks shows that it is highly dependent on the relative orientation of the hyperfine tensors of the two nuclei contributing to this particular peak. This is done initially through a series of simulations and then demonstrated experimentally at a high field (W-band, 95 GHz). The first example concerned the (1)H hyperfine tensors of the stable radical alpha,gamma-bisdiphenylene-beta-phenylallyl (BDPA) immobilized in a polystyrene matrix. Then, the experiment was applied to a more complex system, a frozen solution of Cu(II)-bis(2,2':6',2'' terpyridine) complex. There, the 2D TRIPLE experiment was combined with the variable mixing time (VMT) ENDOR experiment, which determined the absolute sign of the hyperfine couplings involved, and orientation selective ENDOR experiments. Analysis of the three experiments gave the hyperfine tensors of a few coupled protons.
    [Abstract] [Full Text] [Related] [New Search]