These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A linear signal transduction pathway involving phosphatidylinositol 3-kinase, protein kinase Cepsilon, and MAPK in mesangial cells regulates interferon-gamma-induced STAT1alpha transcriptional activation.
    Author: Choudhury GG.
    Journal: J Biol Chem; 2004 Jun 25; 279(26):27399-409. PubMed ID: 15082710.
    Abstract:
    Interferon-gamma (IFN-gamma) exerts an pleiotropic effect in mesangial cells in inflammatory glomerular diseases. The biologic effect of IFN-gamma is mediated by STAT1alpha. The precise mechanism by which IFN-gamma stimulates the transcriptional activity of STAT1alpha is poorly understood. I investigated the role of protein kinase C (PKC) epsilon in regulating the transcriptional activation of STAT1alpha in mesangial cells. IFN-gamma increased PKCepsilon activity in a time-dependent manner with a concomitant increase in STAT1alpha transcriptional activity. Expression of constitutively active PKCepsilon mimicked the effect of IFN-gamma on STAT1alpha-dependent transcription. Expression of dominant negative PKCepsilon inhibited IFN-gamma-induced STAT1alpha-dependent transcription. Ly294002, a pharmacological inhibitor of phosphatidylinositol (PI) 3-kinase, blocked IFN-gamma-induced PKCepsilon activity and resulted in inhibition of STAT1alpha transcriptional activity but had no effect on STAT1alpha tyrosine phosphorylation and STAT1alpha-DNA complex formation. A PKC inhibitor, H7, also had no effect on STAT1alpha tyrosine phosphorylation and DNA binding. However, Ly294002 and H7 blocked IFN-gamma-induced serine phosphorylation of STAT1alpha. These data indicate that PI 3 kinase-dependent PKCepsilon regulates STAT1alpha transcriptional activity in the absence of any effect on its DNA binding capability. In addition to activating PKCepsilon, IFN-gamma increased MAPK activity, resulting in transcriptional activation of Elk-1, a nuclear target of MAPK. Ly294002 or a dominant negative PI 3-kinase significantly blocked IFN-gamma-induced MAPK activity. On the other hand, ectopic expression of constitutively active PKCepsilon significantly increased MAPK activity. IFN-gamma-stimulated MAPK phosphorylated STAT1alpha in vitro. Inhibition of MAPK activity blocked IFN-gamma-induced serine phosphorylation of STAT1alpha; but its tyrosine phosphorylation and DNA binding were partially inhibited. Finally, expression of dominant negative MAPK significantly inhibited IFN-gamma-induced STAT1alpha-dependent transcription. These data provide the first evidence that IFN-gamma stimulates PKCepsilon in a PI 3-kinase-sensitive manner to activate MAPK, which regulates STAT1alpha transcriptional activity.
    [Abstract] [Full Text] [Related] [New Search]