These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Author: Rodgers SL, Cash JN, Siddiq M, Ryser ET. Journal: J Food Prot; 2004 Apr; 67(4):721-31. PubMed ID: 15083724. Abstract: Ozone (3 ppm), chlorine dioxide (3 and 5 ppm), chlorinated trisodium phosphate (100- and 200-ppm chlorine), and peroxyacetic acid (80 ppm) were assessed for reduction of Escherichia coli O157:H7 and Listeria monocytogenes in an aqueous model system and on inoculated produce. Initially, sanitizer solutions were inoculated to contain approximately 10(6) CFU/ml of either pathogen, after which aliquots were removed at 15-s intervals over a period of 5 min and approximately plated to determine log reduction times. Produce was dip inoculated to contain approximately 10(6) E. coli O157:H7 or L. monocytogenes CFU/g, held overnight, submerged in each sanitizer solution for up to 5 min, and then examined for survivors. In the model system study, both pathogens decreased > 5 log following 2 to 5 min of exposure, with ozone being most effective (15 s), followed by chlorine dioxide (19 to 21 s), chlorinated trisodium phosphate (25 to 27 s), and peroxyacetic acid (70 to 75 s). On produce, ozone and chlorine dioxide (5 ppm) were most effective, reducing populations approximately 5.6 log, with chlorine dioxide (3 ppm) and chlorinated trisodium phosphate (200 ppm chlorine) resulting in maximum reductions of approximately 4.9 log. Peroxyacetic acid was the least effective sanitizer (approximately 4.4-log reductions). After treatment, produce samples were stored at 4 degrees C for 9 days and quantitatively examined for E. coli O157:H7, L. monocytogenes, mesophilic aerobic bacteria, yeasts, and molds. Populations of both pathogens remained relatively unchanged, whereas numbers of mesophilic bacteria increased 2 to 3 log during storage. Final mold and yeast populations were significantly higher than initial counts for chlorine dioxide- and ozone-treated produce. Using the nonextended triangle test, whole apples exposed to chlorinated trisodium phosphate (200 ppm chlorine) and shredded lettuce exposed to peroxyacetic acid were statistically different from the other treated samples.[Abstract] [Full Text] [Related] [New Search]