These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wnt signaling enhances FGF2-triggered lens fiber cell differentiation. Author: Lyu J, Joo CK. Journal: Development; 2004 Apr; 131(8):1813-24. PubMed ID: 15084465. Abstract: Wnt signaling is implicated in many developmental processes, including cell fate changes. Several members of the Wnt family, as well as other molecules involved in Wnt signaling, including Frizzled receptors, LDL-related protein co-receptors, members of the Dishevelled and Dickkopf families, are known to be expressed in the lens during embryonic or postembryonic development. However, the function of Wnt signaling in lens fiber differentiation remains unknown. Here, we show that GSK-3beta kinase is inactivated and that beta-catenin accumulates during the early stages of lens fiber cell differentiation. In an explant culture system, Wnt conditioned medium (CM) induced the accumulation of beta-crystallin, a marker of fiber cell differentiation, without changing cell shape. In contrast, epithelial cells stimulated with Wnt after priming with FGF elongated, accumulated beta-crystallin, aquaporin-0, p57kip2, and altered their expression of cadherins. Treatment with lithium, which stabilizes beta-catenin, induced the accumulation of beta-crystallin, but explants treated with lithium after FGF priming did not elongate as they did after Wnt application. These results show that Wnts promote the morphological aspects of fiber cell differentiation in a process that requires FGF signaling, but is independent of beta-catenin. Wnt signaling may play an important role in lens epithelial-to-fiber differentiation.[Abstract] [Full Text] [Related] [New Search]