These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure. Author: Harroun TA, Nieh MP, Watson MJ, Raghunathan VA, Pabst G, Morrow MR, Katsaras J. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031906. PubMed ID: 15089321. Abstract: Using neutron diffraction and a specially constructed high pressure cell suitable for aligned multibilayer systems, we have studied, as a function of pressure, the much observed anomalous swelling regime in dimyristoyl- and dilauroyl-phosphatidylcholine bilayers, DMPC and DLPC, respectively. We have also reanalyzed data from a number of previously published experiments and have arrived at the following conclusions. (a). The power law behavior describing anomalous swelling is preserved in all PC bilayers up to a hydrostatic pressure of 240 MPa. (b). As a function of increasing pressure there is a concomitant decrease in the anomalous swelling of DMPC bilayers. (c). For PC lipids with hydrocarbon chains >or=13 carbons the theoretical unbinding transition temperature T small star, filled is coupled to the main gel-to-liquid crystalline transition temperature T(M). (d). DLPC is intrinsically different from the other lipids studied in that its T small star, filled is not coupled to T(M). (e). For DLPC bilayers we predict a hydrostatic pressure (>290 MPa) where unbinding may occur.[Abstract] [Full Text] [Related] [New Search]