These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Putative physiological significance of vasopressin V1a receptor activation in rat pituicytes. Author: Rosso L, Peteri-Brunbäck B, Mienville JM. Journal: J Neuroendocrinol; 2004 Apr; 16(4):313-8. PubMed ID: 15089968. Abstract: Physiological stimuli operative during, for example, dehydration or lactation, induce neurohypophysial astrocytes (pituicytes) to undergo reversible morphological changes, which in turn may modulate the release of vasopressin and oxytocin. To study the molecular mechanisms of this morphological plasticity, we used primary cultures of rat pituicytes. During stimulation with adenosine, pituicytes become stellate, which is characterized by a round, phase-bright soma and complex arborization, implying major cytoskeletal modifications. Following addition of vasopressin or oxytocin, stellate pituicytes revert to a flat shape. The effects of both hormones are mediated by V(1a) receptor activation, which also induces biphasic Ca(2+) (i) signals in pituicytes. Stellation reversal requires Ca(2+)-dependent activation of Cdc42, a small GTPase known to impact on the cytoskeleton. V(1a) receptor activation by vasopressin or oxytocin also stimulates [(3)H]taurine efflux from cultured pituicytes. As taurine inhibits vasopressin output from neurohypophysial terminals, we postulate a negative-feedback mechanism whereby secreted vasopressin limits its own availability. This stop signal might be reinforced by shape changes elicited by vasopressin in pituicytes. These results support the concept that, during specific physiological states, pituicyte V(1a) receptor activation modulates the release of neurohypophysial hormones.[Abstract] [Full Text] [Related] [New Search]