These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genomic organization and transcriptional analysis of gonadotropin-regulated testicular RNA helicase--GRTH/DDX25 gene. Author: Tsai-Morris CH, Lei S, Jiang Q, Sheng Y, Dufau ML. Journal: Gene; 2004 Apr 28; 331():83-94. PubMed ID: 15094194. Abstract: The gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a new member of the DEAD-box protein family. Phylogenetic analysis revealed that GRTH is distantly related to other members of the family. GRTH is transcriptionally up-regulated by gonadotropin, displays ATPase and RNA helicase activities, and participates in germ cell development. To understand the regulation of GRTH gene expression, we investigated its structural organization and aspects of basal transcriptional regulation at the promoter domain. The 20-kb mouse GRTH gene contains 12 coding exons and all but one of its conserved helicase motifs are contained within single exons. GRTH is a TATA-less gene with multiple transcriptional start sites (TSS), GC-rich sequences and a promoter located within -205/+63 bp of the gene. Sequences -852/-354 and -501/-354 bp caused 40-60% and >80% inhibition of transcription in expressing and non-expressing cells, respectively. Transcriptional activity was recovered only in expressing cells by the addition of upstream sequences (-1085/-852 bp). Sp1/Sp3 supported basal transcriptional activity in all cell types, while E-box was an activator-binding site only in non-expressing cells. These findings indicate that a differential pattern of transcriptional regulation may be involved in the control of GRTH gene expression in a cell-specific manner.[Abstract] [Full Text] [Related] [New Search]