These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multidrug resistance gene G1199A polymorphism alters efflux transport activity of P-glycoprotein.
    Author: Woodahl EL, Yang Z, Bui T, Shen DD, Ho RJ.
    Journal: J Pharmacol Exp Ther; 2004 Sep; 310(3):1199-207. PubMed ID: 15100388.
    Abstract:
    The significance of the human multidrug resistance gene (MDR1) G1199A polymorphism, resulting in a Ser400Asn modification in P-glycoprotein (P-gp), remains unclear. We have developed stable recombinant LLC-PK1 epithelial cells expressing either MDR1wt or MDR11199 to evaluate functional consequences of G1199A [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide]. P-gp activity observed in MDR1wt and MDR11199 cells was completely inhibited in the presence of the specific P-gp inhibitor GF120918. Comparable expression of mRNA and protein in the MDR1-expressed cells and correct localization of P-gp in the apical membrane of recombinant cells was verified. Mean intracellular rhodamine-123 (R123) accumulation, measured by flow cytometry, was approximately 4.75-fold higher in MDR11199 recombinant cells than MDR1wt cells. Cytotoxicity studies have shown that MDR1wt and MDR11199 cells exhibited similar resistance, as measured by EC50 values, to doxorubicin (155 +/- 68 versus 120 +/- 32 nM); however, MDR11199 cells were more resistant to vinblastine (1.41 +/- 0.51 versus 15.7 +/- 4.0 nM; p < 0.001) and vincristine (1.18 +/- 0.56 versus 3.41 +/- 1.47 nM; p < 0.05). The apparent transepithelial permeability ratios of R123 in MDR1wt and MDR11199 cells were 3.54 +/- 0.94 and 2.02 +/- 0.51 (p < 0.05), respectively. Therefore, the G1199A polymorphism alters the efflux and transepithelial permeability of a fluorescent substrate and sensitivity to select cytotoxic agents, which may influence drug disposition and therapeutic efficacy of some P-gp substrates.
    [Abstract] [Full Text] [Related] [New Search]