These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Factors influencing the replication of somatic coliphages in the water environment.
    Author: Muniesa M, Jofre J.
    Journal: Antonie Van Leeuwenhoek; 2004 Jul; 86(1):65-76. PubMed ID: 15103238.
    Abstract:
    The potential replication of somatic coliphages in the environment has been considered a drawback for their use as viral indicators, although the extent to which this affects their numbers in environmental samples has not been assessed. In this study, the replication of somatic coliphages in various conditions was assayed using suspensions containing naturally occurring somatic coliphages and Escherichia coli WG5, which is a host strain recommended for detecting somatic coliphages. The effects on phage replication of exposing strain WG5 and phages to a range of physiological conditions and the effects of the presence of suspended particles or other bacteria were also assayed. Phage replication was further tested using a strain of Klebsiella terrigena and naturally occurring E. coli cells as hosts. Our results indicate that threshold densities of both host bacterium and phages should occur simultaneously to ensure appreciable phage replication. Host cells originating from a culture in the exponential growth phase and incubation at 37 degrees C were the best conditions for phage replication in E. coli WG5. In these conditions the threshold densities required to ensure phage replication were about 10(4) host cells/ml and 10(3) phages/ml, or 10(3) host cells/ml and 10(4) phages/ml, or intermediate values of both. The threshold densities needed for phage replication were higher when the cells proceeded from a culture in the stationary growth phase or when suspended particles or other bacteria were present. Furthermore E. coli WG5 was more efficient in supporting phage replication than either K. terrigenae or E. coli cells naturally occurring in sewage. Our results indicate that the phage and bacterium densities and the bacterial physiological conditions needed for phage replication are rarely expected to be found in the natural water environments.
    [Abstract] [Full Text] [Related] [New Search]