These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of hydrodynamics on many-particle diffusion in 2D colloidal suspensions.
    Author: Falck E, Lahtinen JM, Vattulainen I, Ala-Nissila T.
    Journal: Eur Phys J E Soft Matter; 2004 Mar; 13(3):267-75. PubMed ID: 15103521.
    Abstract:
    We study many-particle diffusion in 2D colloidal suspensions with full hydrodynamic interactions through a novel mesoscopic simulation technique. We focus on the behaviour of the effective scaled tracer and collective-diffusion coefficients DT(rho)/D0 and DC(rho)/D0 respectively, where D0 is the single-particle diffusion coefficient, as a function of the density of the colloids rho. At low Schmidt numbers Sc - 1, we find that hydrodynamics has essentially no effect on the behaviour of DT (rho)/D0. At larger Sc, DT (rho)/D0 seems to be enhanced at all densities, although the differences compared to the case without hydrodynamics are rather minor. The collective-diffusion coefficient, on the other hand, is much more strongly coupled to hydrodynamical conservation laws and is distinctly different from the purely dissipative case without hydrodynamic interactions.
    [Abstract] [Full Text] [Related] [New Search]