These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Treponema denticola immunoinhibitory protein induces irreversible G1 arrest in activated human lymphocytes. Author: Lee W, Pankoski L, Zekavat A, Shenker BJ. Journal: Oral Microbiol Immunol; 2004 Jun; 19(3):144-9. PubMed ID: 15107064. Abstract: Oral spirochetes may contribute to the pathogenesis of a number of disorders including periodontal and periradicular diseases; however, the mechanism (s) by which these organisms act to cause disease is unknown. We have previously shown that extracts of the oral spirochete, Treponema denticola, contain an immunosuppressive protein (Sip) which impairs human lymphocyte proliferation. The objective of this study was to determine the mechanism by which Sip alters the proliferative response of lymphocytes. Human T-cells were activated by PHA in the presence or absence of Sip and cell cycle progression was assessed by flow cytometry. Cell cycle distribution was based upon DNA, RNA and protein content as well as expression of the activation markers; CD69 and IL-2R. Seventy-two hours following activation with PHA, cells were found in the G0, G1, S and G2/M phases of the cell cycle. In contrast, pretreatment with Sip resulted in a significant reduction of cells in the S and G2/M phases and a concomitant increase in the G1 phase. Sip did not alter the expression of the early activation markers CD69 and CD25R. To determine if G1 arrest resulted in activation of the checkpoint and cell death, we also monitored Sip-treated cells for apoptosis. Indeed, treatment with Sip resulted in both DNA fragmentation and caspase activation after 96 h. Our results indicate that Sip induces G1 arrest in human T-cells and, furthermore, that the arrest is irreversible, culminating in activation of the apoptotic cascade. We propose that if cell cycle arrest occurs in vivo, it may result in local and/or systemic immunosuppression and thereby enhance the pathogenicity of spirochetes and/or that of other opportunistic organisms.[Abstract] [Full Text] [Related] [New Search]