These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inflection points of cardiovascular responses and oxygenation are correlated in the distal but not the proximal portions of muscle during incremental exercise.
    Author: Mizuno M, Tokizawa K, Iwakawa T, Muraoka I.
    Journal: J Appl Physiol (1985); 2004 Sep; 97(3):867-73. PubMed ID: 15107412.
    Abstract:
    To test whether there is a regional difference in the exercise pressor reflex within a given muscle, we investigated the relationship between the inflection points of cardiovascular responses and muscle oxygenation during exercise. Seven subjects performed incremental exercise, which consisted of incremental 30-s static knee extensions, each separated by 30 s of recovery. The workload started at 5% maximal voluntary contraction (MVC) and increased by 5% MVC for each increment until exhaustion. Changes (Delta) in the concentrations (denoted by brackets) of oxygenated Hb (O2Hb) and deoxygenated Hb (HHb) were monitored in proximal and distal portions of the vastus lateralis by near-infrared spectroscopy. The inflection points of mean arterial pressure (MAP), calf vascular resistance (CVR), and muscle deoxygenation index (Delta[O2Hb-HHb]) were calculated as the intersection point of two regression equations obtained at lower and higher workloads. The inflection point of Delta[O2Hb-HHb] differed significantly between proximal and distal portions (28.5 +/- 3.0 vs. 39.5 +/- 3.0%MVC, P < 0.05). Linear regression analysis showed significant correlations between the inflection point of Delta[O2Hb-HHb] in the distal portion and MAP (r = 0.89; P < 0.01) and CVR (r = 0.89; P < 0.05), but no significant relationship between the inflection point in the proximal portion and MAP or CVR. These data show that the inflection point of muscle deoxygenation differs between proximal and distal portions within the vastus lateralis during incremental exercise and suggest that the distal portion of the vastus lateralis contributes more to the pressor response than does the proximal portion.
    [Abstract] [Full Text] [Related] [New Search]