These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase from rat liver. Author: Brockhausen I, Möller G, Pollex-Krüger A, Rutz V, Paulsen H, Matta KL. Journal: Biochem Cell Biol; 1992 Feb; 70(2):99-108. PubMed ID: 1510830. Abstract: The specificity of glycosyltransferases is a major control factor in the biosynthesis of O-glycans. The enzyme that synthesizes O-glycan core 1, i.e., UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase (beta 3-Gal-T; EC 2.4.1.122), was partially purified from rat liver. The enzyme preparation, free of pyrophosphatases, beta 4-galactosyltransferase, beta-galactosidase, and N-acetylglucosaminyltransferase I, was used to study the specificity and inhibition of the beta 3-Gal-T. beta 3-Gal-T activity is sensitive to changes in the R-group of the GalNAc alpha-R acceptor substrate and is stimulated when the R-group is a peptide or an aromatic group. Derivatives of GalNAc alpha-benzyl were synthesized and tested as potential substrates and inhibitors. Removal or substitution of the 3-hydroxyl or removal of the 4-hydroxyl of GalNAc abolished beta 3-Gal-T activity. Compounds with modifications of the 3- or 4-hydroxyl of GalNAc alpha-benzyl did not show significant inhibition. Removal or substitution of the 6-hydroxyl of GalNAc reduced activity slightly and these derivatives acted as competitive substrates. derivatives with epoxide groups attached to the 6-position of GalNAc acted as substrates and not as inhibitors, with the exception of the photosensitive 6-O-(4,4-azo)pentyl-GalNAc alpha-benzyl, which inhibited Gal incorporation into GalNAc alpha-benzyl. The results indicate that the enzyme does not require the 6-hydroxyl of GalNAc, but needs the 3- and the axial 4-hydroxyl as essential requirements for binding and activity. In the usual biochemical O-glycan pathway, core 2 (GlcNAc beta 6[Gal beta 3] GalNAc alpha-) is formed from core 1 (Gal beta 3GalNAc-R). We have now demonstrated an alternate pathway that may be of importance in human tissues.[Abstract] [Full Text] [Related] [New Search]