These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress.
    Author: Liang FQ, Green L, Wang C, Alssadi R, Godley BF.
    Journal: Exp Eye Res; 2004 Jun; 78(6):1069-75. PubMed ID: 15109913.
    Abstract:
    Oxidative stress is involved in the pathogenesis of age-related macular degeneration (AMD). Administration of conventional antioxidants has been shown to slow the progression of AMD and vision loss. Melatonin, an endogenous neurohormone produced by the pineal gland and retina, has been reported to be a potent antioxidant and free radical scavenger. In this study we tested whether melatonin can protect retinal pigment epithelial (RPE) cells against hydrogen peroxide (H(2)O(2))-induced cell death. Since mitochondrial DNA (mtDNA) is preferentially susceptible to oxidative damage, we tested whether melatonin can reduce H(2)O(2)-induced mtDNA lesions. A human RPE cell line (ARPE-19) was cultured and exposed to H(2)O(2) (100 and 200 microm) for 1 hr to induce cell death. Prior to H(2)O(2) treatment, cells were treated with various concentrations (0.1-200 microm) of melatonin for 2, 24 or 72 hr. Control cells received either melatonin or ethanol alone. Cell viability, as determined by MTT assay, showed no significant (P>0.05) protection against H(2)O(2) toxicity in cells receiving 2- and 24-hr pretreatment of melatonin at either concentration. However, when melatonin was administered diurnally for 3 consecutive days, this prolonged treatment markedly reduced H(2)O(2)-induced cell death (P>0.05) MtDNA damage, as assessed with quantitative PCR, was significantly decreased (P<0.05) in RPE cells pretreated with melatonin as compared to those without melatonin treatment. These results suggest that melatonin may play a role in protecting RPE cells from oxidative stress.
    [Abstract] [Full Text] [Related] [New Search]