These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase. Author: Konno H, Suzuki T, Bald D, Yoshida M, Hisabori T. Journal: Biochem Biophys Res Commun; 2004 May 21; 318(1):17-24. PubMed ID: 15110747. Abstract: To understand the regulatory function of the gamma and epsilon subunits of chloroplast ATP synthase in the membrane integrated complex, we constructed a chimeric FoF1 complex of thermophilic bacteria. When a part of the chloroplast F1 gamma subunit was introduced into the bacterial FoF1 complex, the inverted membrane vesicles with this chimeric FoF1 did not exhibit the redox sensitive ATP hydrolysis activity, which is a common property of the chloroplast ATP synthase. However, when the whole part or the C-terminal alpha-helices region of the epsilon subunit was substituted with the corresponding region from CF1-epsilon together with the mutation of gamma, the redox regulation property emerged. In contrast, ATP synthesis activity did not become redox sensitive even if both the regulatory region of CF1-gamma and the entire epsilon subunit from CF1 were introduced. These results provide important features for the regulation of FoF1 by these subunits: (1) the interaction between gamma and epsilon is important for the redox regulation of FoF1 complex by the gamma subunit, and (2) a certain structural matching between these regulatory subunits and the catalytic core of the enzyme must be required to confer the complete redox regulation mechanism to the bacterial FoF1. In addition, a structural requirement for the redox regulation of ATP hydrolysis activity might be different from that for the ATP synthesis activity.[Abstract] [Full Text] [Related] [New Search]