These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Silyl-heparin bonding improves the patency and in vivo thromboresistance of carbon-coated polytetrafluoroethylene vascular grafts.
    Author: Laredo J, Xue L, Husak VA, Ellinger J, Singh G, Zamora PO, Greisler HP.
    Journal: J Vasc Surg; 2004 May; 39(5):1059-65. PubMed ID: 15111862.
    Abstract:
    OBJECTIVES: Our purpose was to improve the performance of carbon-coated expanded polytetrafluoroethylene vascular grafts by bonding the grafts with silyl-heparin, a biologically active heparin analog, using polyethylene glycol as a cross-linking agent. Material and method Silyl-heparin-bonded carbon-coated expanded polytetrafluoroethylene vascular grafts (Bard Peripheral Vascular, Tempe, Ariz), were evaluated for patency and platelet deposition 2 hours, 7 days, and 30 days after graft implantation in a canine bilateral aortoiliac artery model. Platelet deposition was determined by injection of autologous, (111)Indium-radiolabeled platelets, followed by a 2-hour circulation period prior to graft explantation. Histologic studies were performed on a 2-mm longitudinal strip of each graft (7-day and 30-day groups). Heparin activity of the explanted silyl-heparin grafts was determined by using an antithrombin-III based thrombin binding assay. RESULTS: Overall chronic graft patency (7-day and 30-day groups) was 100% for the silyl-heparin bonded (16/16) grafts versus 68.75% for control (11/16) grafts (P =.043). Acute 2-hour graft patency was 100% for the silyl-heparin bonded (6/6) grafts versus 83.3% for control (5/6) grafts. Radiolabeled platelet deposition studies revealed a significantly lower amount of platelets deposited on the silyl-heparin grafts as compared with control grafts in the 30-day group (13.8 +/- 7.18 vs 28.4 +/- 9.73, CPM per cm2 per million platelets, mean +/- SD, P =.0451, Wilcoxon rank sum test). In the 2-hour group of dogs, a trend towards a lower deposition of platelets on the silyl-heparin grafts was observed. There was no significant difference in platelet deposition between the two grafts in the 7-day group. Histologic studies revealed a significant reduction in intraluminal graft thrombus present on the silyl-heparin grafts as compared with control grafts in the 30-day group of animals. In contrast, there was no difference in amount of graft thrombus present on both graft types in the 7-day group of dogs. Pre-implant heparin activity on the silyl-heparin bonded grafts was 2.0 IU/cm(2) (international units[IU]/cm(2)). Heparin activity remained present on the silyl-heparin grafts after explantation at all 3 time points (2 hours: above upper limit of assay, upper limit = 0.57, n = 6; 7 days: 0.106 +/- 0.015, n = 5; 30 days: 0.007 +/- 0.001, n = 5; mean +/- SD, IU/cm(2)). CONCLUSION: Silyl-heparin bonding onto carbon-coated expanded polytetrafluoroethylene vascular grafts resulted in (1) improved graft patency, (2) increased in vivo graft thromboresistance, and (3) a significant reduction in intraluminal graft thrombus. This graft may prove to be useful in the clinical setting.
    [Abstract] [Full Text] [Related] [New Search]