These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of Na-K-ATPase in thick ascending limbs by NO depends on O2- and is diminished by a high-salt diet.
    Author: Varela M, Herrera M, Garvin JL.
    Journal: Am J Physiol Renal Physiol; 2004 Aug; 287(2):F224-30. PubMed ID: 15113751.
    Abstract:
    A high-salt diet enhances nitric oxide (NO)-induced inhibition of transport in the thick ascending limb (THAL). Long exposures to NO inhibit Na-K-ATPase in cultured cells. We hypothesized that NO inhibits THAL Na-K-ATPase after long exposures and a high-salt diet would augment this effect. Rats drank either tap water or 1% NaCl for 7-10 days. Na-K-ATPase activity was assessed by measuring ouabain-sensitive ATP hydrolysis by THAL suspensions. After 2 h, spermine NONOate (SPM; 5 microM) reduced Na-K-ATPase activity from 0.44 +/- 0.03 to 0.30 +/- 0.04 nmol P(i).microg protein(-1).min(-1) in THALs from rats on a normal diet (P < 0.03). Nitroglycerin also reduced Na-K-ATPase activity (P < 0.04). After 20 min, SPM had no effect (change -0.07 +/- 0.05 nmol P(i).microg protein(-1).min(-1)). When rats were fed high salt, SPM did not inhibit Na-K-ATPase after 120 min. To investigate whether ONOO(-) formed by NO reacting with O(2)(-) was involved, we measured O(2)(-) production. THALs from rats on normal and high salt produced 35.8 +/- 0.3 and 23.7 +/- 0.8 nmol O(2)(-).min(-1).mg protein(-1), respectively (P < 0.01). Because O(2)(-) production differed, we studied the effects of the O(2)(-) scavenger tempol. In the presence of 50 microM tempol, SPM did not inhibit Na-K-ATPase after 120 min (0.50 +/- 0.05 vs. 0.52 +/- 0.07 nmol P(i).microg protein(-1).min(-1)). Propyl gallate, another O(2)(-) scavenger, also prevented SPM-induced inhibition of Na-K-ATPase activity. SPM inhibited pump activity in tubules from rats on high salt when O(2)(-) levels were increased with xanthine oxidase and hypoxanthine. We concluded that NO inhibits Na-K-ATPase after long exposures when rats are on a normal diet and this inhibition depends on O(2)(-). NO donors do not inhibit Na-K-ATPase in THALs from rats on high salt due to decreased O(2)(-) production.
    [Abstract] [Full Text] [Related] [New Search]