These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and pharmacological evaluation of 3-(3,4-dichlorophenyl)-1-indanamine derivatives as nonselective ligands for biogenic amine transporters. Author: Yu H, Kim IJ, Folk JE, Tian X, Rothman RB, Baumann MH, Dersch CM, Flippen-Anderson JL, Parrish D, Jacobson AE, Rice KC. Journal: J Med Chem; 2004 May 06; 47(10):2624-34. PubMed ID: 15115403. Abstract: In our efforts toward developing a nonselective ligand that would block the effects of stimulants such as methamphetamine at dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporters, we synthesized a series of 3-(3,4-dichlorophenyl)-1-indanamine derivatives. Two of the examined higher affinity compounds had a phenolic hydroxyl group enabling preparation of a medium to long chain carboxylic acid ester that might eventually be useful for a long-acting depot formulation. The in vitro data indicated that (-)-(1R,3S)-trans-3-(3,4-dichlorophenyl)-6-hydroxy-N-methyl-1-indanamine ((-)-(1R,3S)-11) displays high-affinity binding and potent inhibition of uptake at all three biogenic amine transporters. In vivo microdialysis experiments demonstrated that intravenous administration of (-)-(1R,3S)-11 to rats elevated extracellular DA and 5-HT in the nucleus accumbens in a dose-dependent manner. Pretreating rats with 0.5 mg/kg (-)-(1R,3S)-11 elevated extracellular DA and 5-HT by approximately 150% and reduced methamphetamine-induced neurotransmitter release by about 50%. Ex vivo autoradiography, however, demonstrated that iv administration of (-)-(1R,3S)-11 produced a dose-dependent, persistent occupation of 5-HT transporter binding sites but not DA transporter sites.[Abstract] [Full Text] [Related] [New Search]