These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 4-(omega-(alkyloxy)alkyl)-1H-imidazole derivatives as histamine H(3) receptor antagonists/agonists.
    Author: Meier G, Krause M, Hüls A, Ligneau X, Pertz HH, Arrang JM, Ganellin CR, Schwartz JC, Schunack W, Stark H.
    Journal: J Med Chem; 2004 May 06; 47(10):2678-87. PubMed ID: 15115409.
    Abstract:
    In an effort to develop new histamine H(3) receptor antagonists usable as pharmacological tools we present here novel unsymmetrical ether derivatives. Etherification of different omega-(1H-imidazol-4-yl)alkyl scaffolds led to compounds containing alkyl chains of increasing lengths either with or without unsaturated termini, cycloalkyl or arylalkyl moieties, or additional heteroatoms. When investigated in an in vitro assay on rat synaptosomes, the majority of compounds displayed potencies in the low nanomolar concentration range at the H(3) receptor, e.g., 4-(3-(3-cyclopentylpropyloxy)propyl)-1H-imidazole (27, K(i) = 7 nM). FUB 465, 4-(3-(ethoxy)propyl)-1H-imidazole (14), a useful tool for the characterization of constitutive activity of H(3) receptors in vivo in rodents, proved to be of high oral in vivo potency in mice (ED(50) = 0.26 mg/kg). Further, the influence of chosen compounds on specific [(35)S]GTPgammaS binding was assayed on HEK293 cell membranes expressing the human histamine H(3) receptor revealing partial agonism of the compounds in this particular model. These distinct responses are further hints for "protean agonism" in this class of compounds. Additionally, selected compounds were functionally investigated in vitro on isolated organs of the guinea-pig at H(3), H(1), and H(2) receptors.
    [Abstract] [Full Text] [Related] [New Search]