These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Opposite alterations of NPFF1 and NPFF2 neuropeptide FF receptor density in the triple MOR/DOR/KOR-opioid receptor knockout mouse brains. Author: Gouardères C, Kieffer BL, Zajac JM. Journal: J Chem Neuroanat; 2004 May; 27(2):119-28. PubMed ID: 15121216. Abstract: Mice lacking the mu-delta-kappa-opioid receptor (MOR/DOR/KOR) genes and their corresponding wild-type littermates have been used to quantify NPFF(1) and NPFF(2) (neuropeptide FF) receptors by in vitro autoradiography in the central nervous tissues. Adjacent coronal sections were labelled with [125I]YVP ([125I]YVPNLPQRF-NH(2)) and [125I]EYF ([125I]EYWSLAAPQRF-NH(2)) as specific radioligands for NPFF(1) and NPFF(2) receptors, respectively. NPFF(2) receptors are predominantly expressed in both genotypes, but their density increases significantly in non cortical regions of mutant mice: 64% in the amygdaloid area, 89, 308, 1214 and 49% in the nucleus of the vertical limb of the diagonal band, substantia nigra, the vestibular nucleus and the spinal cord, respectively. In contrast, the density of the NPFF(1) subtype is lower than NPFF(2) in both genotypes and significantly decreased in some brain areas of mutant mice: -99, -90 and -90% in the nucleus of the vertical limb of the diagonal band, substantia nigra and the spinal cord, respectively. This study shows that mice lacking opioid receptors have brain region-dependent increases (NPFF(2)) and decreases (NPFF(1)) in NPFF receptors densities and suggests a different functional participation of each NPFF receptor subtype in the actions of opioids.[Abstract] [Full Text] [Related] [New Search]