These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Daily short-period gravitation can prevent functional and structural changes in arteries of simulated microgravity rats.
    Author: Sun B, Zhang LF, Gao F, Ma XW, Zhang ML, Liu J, Zhang LN, Ma J.
    Journal: J Appl Physiol (1985); 2004 Sep; 97(3):1022-31. PubMed ID: 15121745.
    Abstract:
    This study was designed to clarify whether simulated microgravity-induced differential adaptational changes in cerebral and hindlimb arteries could be prevented by daily short-period restoration of the normal distribution of transmural pressure across arterial vasculature by either dorsoventral or footward gravitational loading. Tail suspension (Sus) for 28 days was used to simulate cardiovascular deconditioning due to microgravity. Daily standing (STD) for 1, 2, or 4 h, or +45 degrees head-up tilt (HUT) for 2 or 4 h was used to provide short-period dorsoventral or footward gravitational loading as countermeasure. Functional studies showed that Sus alone induced an enhancement and depression in vasoconstrictor responsiveness of basilar and femoral arterial rings, respectively, as previously reported. These differential functional alterations can be prevented by either of the two kinds of daily gravitational loading treatments. Surprisingly, daily STD for as short as 1 h was sufficient to prevent the differential functional changes that might occur due to Sus alone. In morphological studies, the effectiveness of daily 4-h HUT or 1-h STD in preventing the differential remodeling changes in the structure of basilar and anterior tibial arteries induced by Sus alone was examined by histomorphometry. The results showed that both the hypertrophic and atrophic changes that might occur, respectively, in cerebral and hindlimb arteries due to Sus alone were prevented not only by daily HUT for 4 h but also by daily STD even for 1 h. These data indicate that daily gravitational loading by STD for as short as 1 h is sufficient to prevent differential adaptational changes in function and structure of vessels in different anatomic regions induced by a medium-term simulated microgravity.
    [Abstract] [Full Text] [Related] [New Search]