These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of phosphatidylcholine-selective and phosphatidylinositol-selective phospholipases D in Madin-Darby canine kidney cells.
    Author: Huang C, Wykle RL, Daniel LW, Cabot MC.
    Journal: J Biol Chem; 1992 Aug 25; 267(24):16859-65. PubMed ID: 1512228.
    Abstract:
    Intact cells and cell-free systems were employed to characterize phospholipase D (PLD) activity in Madin-Darby canine kidney (MDCK) cells. In cells prelabeled with [3H]glycerol, 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited phosphatidylcholine (PC) hydrolysis by PLD, as shown by the prolonged formation of [3H]phosphatidylethanol (PEt) and an accompanying decrease in [3H]PC. In contrast, bradykinin elicited rapid formation of [3H]PEt (approximately 1 min) accompanied by a decrease in [3H]phosphatidylinositol (PI). When the agonists were administered simultaneously, [3H]PEt formation was biphasic. In cells prelabeled with [3H] choline, at times less than 1 min, bradykinin failed to induce significant change in [3H]choline release. Bradykinin-induced formation of [3H]PEt in the [3H]glycerol-labeled cells was strictly dependent on extracellular Ca2+, whereas TPA-induced formation of [3H]PEt did not require extracellular Ca2+. Cell-free assays for PLD were used to assess the enzyme location, substrate specificity, and cofactor requirements. The PC-PLD activity (PEt formation) against [3H]stearoyl-PC was primarily localized in the 440 x g pellet (membrane- and nuclear-associated), preferred PC as a substrate, required detergent, and was not influenced by Ca2+ at low concentrations but was inhibited by Ca2+ in excess of 0.5 mM. The PI-PLD activity against [3H]stearoyl-PI was found largely in the 100,000 x g supernatant (cytosol), was strictly Ca(2+)-dependent, and did not require detergent. From these data, we conclude that MDCK cells contain two PLD subtypes: 1) a membrane-associated, PC-selective enzyme that responds to TPA resulting in prolonged hydrolysis of PC (the PC-PLD is Ca(2+)-independent, but requires detergent); 2) a cytosolic, PI-selective enzyme that responds rapidly but transiently to bradykinin (the PI-PLD requires Ca2+ but not detergent).
    [Abstract] [Full Text] [Related] [New Search]