These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anion binding to the Schiff base of the bacteriorhodopsin mutants Asp-85----Asn/Asp-212----Asn and Arg-82----Gln/Asp-85----Asn/Asp-212----Asn.
    Author: Marti T, Otto H, Rösselet SJ, Heyn MP, Khorana HG.
    Journal: J Biol Chem; 1992 Aug 25; 267(24):16922-7. PubMed ID: 1512233.
    Abstract:
    Studies of bacteriorhodopsin have indicated that the charge environment of the protonated Schiff base consists of residues Asp-85, Asp-212, and Arg-82. As shown recently (Marti, T., Rösselet, S. J., Otto, H., Heyn, M. P., and Khorana, H. G. (1991) J. Biol. Chem. 266, 18674-18683), in the double mutant Asp-85----Asn/Asp-212----Asn chromophore formation is restored in the presence of salts, suggesting that exogenous anions function as counterions to the protonated Schiff base. To investigate the role of Arg-82 and of the Schiff base in anion binding, we have prepared the triple mutant Arg-82----Gln/Asp-85----Asn/Asp-212----Asn and compared its properties with those of the Asp-85----Asn/Asp-212----Asn double mutant. Regeneration of the chromophore with absorption maximum near 560 nm occurs in the triple mutant in the presence of millimolar salt, whereas in the double mutant molar salt concentrations are required. Spectrometric titrations reveal that the pKa of Schiff base deprotonation is markedly reduced from 11.3 for the wild type to 4.9 for the triple mutant in 1 mM NaCl and to 5.5 for the double mutant in 10 mM NaCl. In both mutants, increasing the chloride concentration promotes protonation of the chromophore and results in a continuous rise of the Schiff base pKa, yielding a value of 8.4 and 7.6, respectively, in 4 M NaCl. The absorption maximum of the two mutants shows a progressive red shift, as the ionic radius of the halide increases in the sequence fluoride, chloride, bromide, and iodide. An identical spectral correlation in the presence of halides is observed for the acid-purple form of bacteriorhodopsin. We conclude, therefore, that upon neutralization of the two counterions Asp-85 and Asp-212 by mutation or by protonation at low pH, exogenous anions substitute as counterions by directly binding to the protonated Schiff base. This interaction may provide the basis for the proposed anion translocation by the acid-purple form of bacteriorhodopsin as well as by the related halorhodopsin.
    [Abstract] [Full Text] [Related] [New Search]