These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disruption of MKK4 signaling reveals its tumor-suppressor role in embryonic stem cells. Author: Cazillis M, Bringuier AF, Delautier D, Buisine M, Bernuau D, Gespach C, Groyer A. Journal: Oncogene; 2004 Jun 10; 23(27):4735-44. PubMed ID: 15122334. Abstract: The dual Ser/Thr kinase MKK4 and its downstream targets JNK and p38 regulate critical cellular functions during embryogenesis and development. MKK4 has been identified as a putative tumor-suppressor gene in human solid tumors of breast, prostate and pancreas. To clarify the mechanisms underlying the transforming potential of molecular defects targeting MKK4, we have generated totipotent embryonic stem (ES) cells expressing the dominant-negative mutant DN-MKK4(Ala), S257A/T261A. Stably transfected DN-MKK4-ES cells exhibit a transformed fibroblast-like morphology, reduced proliferation rate, were no more submitted to cell contact inhibition, were growing in soft agar, and were much more tumorigenic than parental ES cells in athymic nude mice. These phenotypic changes: (i) are consistent with the protection of DN-MKK4-transfected ES cells from spontaneous, cell density-dependent, and stress-induced apoptosis (DAPI staining and poly (ADP-ribose) polymerase (PARP) cleavage) and (ii) correlated with alterations in JNK, p38, and Erk-1/-2 MAPK/SAPK signaling. Taken together, our data provide a new mechanism linking the MKK4 signaling pathways to cancer progression and identify MKK4 as a tumor-suppressor gene implicated in several transforming functions.[Abstract] [Full Text] [Related] [New Search]