These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides.
    Author: Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG.
    Journal: J Biomed Mater Res A; 2004 Jun 01; 69(3):535-43. PubMed ID: 15127400.
    Abstract:
    We synthesized biomimetic hydrogels modified with an osteopontin-derived peptide (ODP) and used them as a substrate for in vitro culture of marrow stromal cells (MSCs) to investigate the effect of the biomimetic surface on differentiation of MSCs into osteoblasts. Proliferation and biological assays for 16 days proved that MSCs became differentiated into osteoblasts secreting osteogenic phenotypic markers such as alkaline phosphatase (ALP), osteopontin, and mineralized calcium. In addition, there was an additive effect of the cell-binding peptide on differentiation and mineralization of MSCs cultured in the presence of soluble osteogenic supplements in cell culture media. For example, calcium content at day 16 on peptide-modified hydrogels was significantly higher than on tissue culture polystyrene. Two general trends were observed: (1) proliferation of MSCs decreased as the amount of differentiation markers increased, and (2) higher peptide concentrations accelerated the differentiation of MSCs. On the hydrogel modified with ODP, ALP activity exhibited a maximum value of 36.7 +/- 4.2 pmol/cell/h at day 10 for the concentration of 2 micromol/g while the culture time needed for maximum ALP activity occurred on day 13 for the lower concentrations. On the same hydrogel, the calcium content at day 10 was 21.4 +/- 2.3 ng/cell for the peptide concentration of 2 micromol/g and 1.0 +/- 0.3 ng/cell for 1.0 micromol/g. We used Gly-Arg-Gly-Asp-Ser (GRGDS) for modification of the hydrogel as a comparison to the results with ODP. However, osteoblast development was not significantly affected by the nature of the binding peptide sequences. These results suggest that MSC function can be modulated by variation of the peptide concentration in biomimetic hydrogels used for scaffold-based bone tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]