These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30-84. Author: Morello JE, Pierson EA, Pierson LS. Journal: Appl Environ Microbiol; 2004 May; 70(5):3103-9. PubMed ID: 15128573. Abstract: Phenazine antibiotic production in the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part via the PhzR/PhzI N-acyl homoserine lactone (AHL) system. Previous work showed that a subpopulation of the wheat rhizosphere community positively affected phenazine gene expression in strain 30-84 via AHL signals (E. A. Pierson, D. W. Wood, J. A. Cannon, F. M. Blachere, and L. S. Pierson III, Mol. Plant-Microbe Interact. 11:1078-1084, 1998). In the present work, a second subpopulation, one that negatively affected phenazine gene expression, was identified from this rhizosphere community. Strain 30-84 grown in conditioned medium (CM) from several strains produced lower levels of phenazines (1.5- to 9.3-fold) than control when grown in CM from the strain 30-84I(1)/I(2). Growth of the phzB::lacZ reporter strain 30-84Z in this CM resulted in decreased lacZ expression (4.3- to 9.2-fold) compared to growth of the control strain in CM, indicating that inhibition of phzB occurred at the level of gene expression. Preliminary chemical and biological characterizations suggested that these signals, unlike other identified negative signals, were not extractable in ethyl acetate. Introduction of extra copies of phzR and phzI, but not phzI alone, in trans into strain 30-84Z reduced the negative effect on phzB::lacZ expression. The presence of negative-signal-producing strains in a mixture with strain 30-84 reduced strain 30-84's ability to inhibit the take-all disease pathogen in vitro. Together, the results from the previous work on the positive-signal subpopulation and the present work on the negative-signal subpopulation suggest that cross-communication among members of the rhizosphere community and strain 30-84 may control secondary metabolite production and pathogen inhibition.[Abstract] [Full Text] [Related] [New Search]