These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms.
    Author: Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, Rubin EJ, Ernst JD.
    Journal: J Immunol; 2004 May 15; 172(10):6272-80. PubMed ID: 15128816.
    Abstract:
    Mycobacterium tuberculosis overcomes macrophage bactericidal activities and persists intracellularly. One mechanism by which M. tuberculosis avoids macrophage killing might be through inhibition of IFN-gamma-mediated signaling. In this study we provide evidence that at least two distinct components of M. tuberculosis, the 19-kDa lipoprotein and cell wall peptidoglycan (contained in the mycolylarabinogalactan peptidoglycan (mAGP) complex), inhibit macrophage responses to IFN-gamma at a transcriptional level. Moreover, these components engage distinct proximal signaling pathways to inhibit responses to IFN-gamma: the 19-kDa lipoprotein inhibits IFN-gamma signaling in a Toll-like receptor (TLR)2-dependent and myeloid differentiation factor 88-dependent fashion whereas mAGP inhibits independently of TLR2, TLR4, and myeloid differentiation factor 88. In addition to inhibiting the induction of specific IFN-gamma responsive genes, the 19-kDa lipoprotein and mAGP inhibit the ability of IFN-gamma to activate murine macrophages to kill virulent M. tuberculosis without inhibiting production of NO. These results imply that inhibition of macrophage responses to IFN-gamma may contribute to the inability of an apparently effective immune response to eradicate M. tuberculosis.
    [Abstract] [Full Text] [Related] [New Search]