These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor in vestibular schwannoma. Author: Diensthuber M, Brandis A, Lenarz T, Stöver T. Journal: Otol Neurotol; 2004 May; 25(3):359-65. PubMed ID: 15129118. Abstract: HYPOTHESIS: Transforming growth factor-beta1, glial cell line-derived neurotrophic factor, and their receptors are expressed in vestibular schwannoma, and the expression data correlate with the proliferation activity (Ki-67 labeling index) and the clinical growth rate of vestibular schwannoma tissue. BACKGROUND: Glial cell line-derived neurotrophic factor is a potent growth factor for the central and peripheral nervous system. Recent results demonstrate that glial cell line-derived neurotrophic factor requires transforming growth factor-beta to exert its trophic effect on neural tissue. A functional role, including that in Schwann cell proliferation, is discussed for both transforming growth factor-beta1 and glial cell line-derived neurotrophic factor. METHODS: Immunohistochemical analysis for transforming growth factor-beta1 and glial cell line-derived neurotrophic factor and their receptors TbetaR II, GFRalpha-1, and Ret was performed on formalin-fixed, paraffin-embedded archival surgical specimens. The Ki-67 labeling index (mean Ki-67 labeling index and highest Ki-67 labeling index for Antoni Type A and Type B regions) and the clinical growth rate of vestibular schwannoma were determined and correlated with the expression patterns of the examined neurotrophic factors and their receptors. RESULTS: Results demonstrate co-expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor with higher levels in Antoni Type A than in Antoni Type B regions. Ninety-five percent of vestibular schwannomas exhibited transforming growth factor-beta1 immunoreactivity, and glial cell line-derived neurotrophic factor expression was found in 100% of vestibular schwannoma specimens. Fifty percent of vestibular schwannoma displayed TbetaR II immunostaining, 100% showed positive reactions for GFRalpha-1, and 86% showed positive reactions for Ret. Statistical analysis revealed no significant correlation in neurotrophin expression related to sex, age, tumor size, clinical growth rate, or Ki-67-labeling indices. CONCLUSIONS: Expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor may suggest a biological role for both growth factors in vestibular schwannomas. Trophic transforming growth factor-beta/glial cell line-derived neurotrophic factor synergism seems possible and is underscored by co-expression of both neurotrophic factors and their receptors.[Abstract] [Full Text] [Related] [New Search]