These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Origins of bilateral symmetry: Hox and dpp expression in a sea anemone.
    Author: Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ.
    Journal: Science; 2004 May 28; 304(5675):1335-7. PubMed ID: 15131263.
    Abstract:
    Over 99% of modern animals are members of the evolutionary lineage Bilateria. The evolutionary success of Bilateria is credited partly to the origin of bilateral symmetry. Although animals of the phylum Cnidaria are not within the Bilateria, some representatives, such as the sea anemone Nematostella vectensis, exhibit bilateral symmetry. We show that Nematostella uses homologous genes to achieve bilateral symmetry: Multiple Hox genes are expressed in a staggered fashion along its primary body axis, and the transforming growth factor-beta gene decapentaplegic (dpp) is expressed in an asymmetric fashion about its secondary body axis. These data suggest that bilateral symmetry arose before the evolutionary split of Cnidaria and Bilateria.
    [Abstract] [Full Text] [Related] [New Search]