These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different pulse shapes to obtain small fiber selective activation by anodal blocking--a simulation study.
    Author: Vucković A, Rijkhoff NJ, Struijk JJ.
    Journal: IEEE Trans Biomed Eng; 2004 May; 51(5):698-706. PubMed ID: 15132495.
    Abstract:
    The aim of this study was to investigate whether it is possible to reduce a charge per pulse, which is needed for selective nerve stimulation. Simulation is performed using a two-part simulation model: a volume conductor model to calculate the electrical potential distribution inside a tripolar cuff electrode and a human fiber model to simulate the fiber response to simulation. Selective stimulation is obtained by anodal block. To obtain anodal block of large fibers, long square pulses (> 350 micros) with a relatively high currents (1-2.5 mA) are usually required. These pulses might not be safe for a long-term application because of a high charge per pulse. In this study, several pulse shapes are proposed that have less charge per pulse compared with the conventional square pulse and would therefore be safer in a chronic application. Compared with the conventional square pulse, it was possible to reduce the charge with all proposed pulse shapes, but the best results are obtained with a combination of a square depolarizing pulse and a blocking pulse. The charge per pulse was up to 32% less with that pulse shape than with a square pulse. Using a hyperpolarizing anodal prepulse preceding a square pulse, it was not possible to block nerve fibers in a whole nerve bundle and to obtain reduction of a charge per phase. Reduction of the charge could be achieved only with spatially selective blocking. The charge per phase was larger for the combination of a hyperpolarizing anodal prepulse and a two-step pulse than for the two-step pulse alone.
    [Abstract] [Full Text] [Related] [New Search]