These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac.
    Author: Cieplak AS, Sürmeli NB.
    Journal: J Org Chem; 2004 May 14; 69(10):3250-61. PubMed ID: 15132529.
    Abstract:
    A method is described to evaluate backbone interactions in proteins via computational unnatural amino acid mutagenesis. Several N-acetyl polyalanyl amides (AcA(n)NH(2)) were optimized in the representative helical (3(10)-, 4(13)-, and a "hybrid" kappa-helix, n = 7, 9, 10, 14) and hairpin (two- and three-stranded antiparallel beta-sheets with type I turns betaalphaalphaepsilon, n = 6, 9, 10) conformations, and extended conformers of N-acetyl polyalanyl methylamides (n = 2, 3) were used to derive multistranded beta-sheet fragments. Subsequently, each residue of every model structure was substituted, one at a time, with l-lactic acid. The resulting mutant structures were again optimized, and group-transfer energies DeltaE(GT) were obtained as heats of the isodesmic reactions: AcA(n)NHR + AcOMe --> AcA(x)LacA(y)NHR + AcNHMe (R = H, CH(3)). These group-transfer energies correlate with the degree of charge polarization of the substituted peptide linkages as measured by the difference Deltae in H and O Mulliken populations in HN-C=O and with the H-bond distances in the "wild-type" structures. A good correlation obtains for the HF/3-21G and B3LYP/6-31G* group-transfer energies. The destabilization effects are interpreted in terms of loss of interstrand and intrastrand H-bonds, decrease in Lewis basicity of the C=O group, and O...O repulsion. On the basis of several comparisons of Ala --> Lac DeltaE(GT)'s with heats of the NH --> CH(2) substitutions, the latter contribution is estimated (B3LYP/6-31G*) to range between 1.5 and 2.4 kcal mol(-1), a figure close to the recent experimental DeltaDeltaG(o) value of 2.6 kcal mol(-1) (McComas, C. C.; Crowley, B. M.; Boger, D. L. J. Am.Chem. Soc. 2003, 125, 9314). The partitioning yields the following maximum values of the electronic association energy of H-bonds in the examined sample of model structures (B3LYP/6-31G* estimates): 3(10)-helix D(e) = -1.7 kcal mol(-1), alpha-helix D(e) = -3.8 kcal mol(-1), beta-sheet D(e) = -6.1 kcal mol(-1). The premise of experimental evaluations of the backbone-backbone H-bonding that Ala --> Lac substitution in proteins is isosteric (e.g., Koh, J. T.; Cornish, V. W.; Schultz, P. G. Biochemistry 1997, 36, 11314) is often but not always corroborated. Examination of the integrity of H-bonding pattern and phi(i), psi(i) distribution identified several mutants with significant distortions of the "wild-type" structure resulting inter alia from the transitions between i, i + 3 and i, i + 4 H-bonding in helices, observed previously in the crystallographic studies of depsipeptides (Ohyama, T.; Oku, H.; Hiroki, A.; Maekawa, Y.; Yoshida, M.; Katakai, R. Biopolymers 2000, 54, 375; Karle, I. L.; Das, C.; Balaram, P. Biopolymers 2001, 59, 276). Thus, the isodesmic reaction approach provides a simple way to gauge how conformation of the polypeptide chain and dimensions of the H-bonding network affect the strength of backbone-backbone C=O...HN bonds. The results indicate that the stabilization provided by such interactions increases on going from 3(10)-helix to alpha-helix to beta-sheet.
    [Abstract] [Full Text] [Related] [New Search]