These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Porous 3-D scaffolds from regenerated silk fibroin.
    Author: Nazarov R, Jin HJ, Kaplan DL.
    Journal: Biomacromolecules; 2004; 5(3):718-26. PubMed ID: 15132652.
    Abstract:
    Three fabrication techniques, freeze-drying, salt leaching and gas foaming, were used to form porous three-dimensional silk biomaterial matrixes. Matrixes were characterized for morphological and functional properties related to processing method and conditions. The porosity of the salt leached scaffolds varied between 84 and 98% with a compressive strength up to 175 +/- 3 KPa, and the gas foamed scaffolds had porosities of 87-97% and compressive strength up to 280 +/- 4 KPa. The freeze-dried scaffolds were prepared at different freezing temperatures (-80 and -20 degrees C) and subsequently treated with different concentrations (15 and 25%) and hydrophilicity alcohols. The porosity of these scaffolds was up to 99%, and the maximum compressive strength was 30 +/- 2 KPa. Changes in silk fibroin structure during processing to form the 3D matrixes were determined by FT-IR and XrD. The salt leached and gas foaming techniques produced scaffolds with a useful combination of high compressive strength, interconnected pores, and pore sizes greater than 100 microns in diameter. The results suggest that silk-based 3D matrixes can be formed for utility in biomaterial applications.
    [Abstract] [Full Text] [Related] [New Search]