These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of cyclophosphamide and buthionine sulfoximine on ovarian glutathione and apoptosis.
    Author: Lopez SG, Luderer U.
    Journal: Free Radic Biol Med; 2004 Jun 01; 36(11):1366-77. PubMed ID: 15135172.
    Abstract:
    Treatment with the anticancer drug cyclophosphamide (CPA) destroys ovarian follicles. The active metabolites of CPA are detoxified by conjugation with glutathione (GSH). We tested the hypotheses that CPA causes apoptosis in ovarian follicles and that suppression of ovarian GSH synthesis before CPA administration enhances CPA-induced apoptosis. Proestrous rats were given two injections, 2 h apart, with (1) saline, then saline; (2) saline, then 50 mg/kg CPA; (3) saline, then 300 mg/kg CPA; or (4) 5 mmol/kg buthionine sulfoximine (BSO) to inhibit glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, and then 50 mg/kg CPA. Statistically significantly increased DNA fragmentation by agarose gel electrophoresis and granulosa cell apoptosis by TUNEL were observed in the CPA-treated ovaries 24 h after the second injection, but BSO did not enhance the effect of 50 mg/kg CPA. We next tested the hypothesis that CPA depresses ovarian GSH concentration and expression of the rate-limiting enzyme in GSH synthesis, GCL. Proestrous rats were injected with 300 or 50 mg/kg CPA or vehicle and were sacrificed 8 or 24 h later. After CPA treatment, ovarian and hepatic GSH levels decreased significantly, and ovarian GCL subunit mRNA levels increased significantly. There were no significant changes in GCL subunit protein levels. Finally, we tested the hypothesis that GSH depletion causes apoptosis in ovarian follicles. Proestrous or estrous rats were injected with 5 mmol/kg BSO or saline at 0700 and 1900 h. There was a significant increase in the percentage of histologically atretic follicles and a nonsignificant increase in the percentage of apoptotic, TUNEL-positive follicles 24 h after onset of BSO treatment. Our results demonstrate that CPA destroys ovarian follicles by inducing granulosa cell apoptosis and that CPA treatment causes a decline in ovarian GSH levels. More pronounced GSH suppression achieved after BSO treatment did not cause a statistically significant increase in follicular apoptosis. Thus, GSH depletion does not seem to be the mechanism by which CPA causes follicular apoptosis.
    [Abstract] [Full Text] [Related] [New Search]